一、控制方程
瞬态动力学的基本控制方程为:
\\[ M\\ddot{u}(t) + C\\dot{u}(t) + Ku(t) = F(t) \\]
其中:
\\( M \\) 为质量矩阵(反映惯性效应)
\\( C \\) 为阻尼矩阵(描述能量耗散)
\\( K \\) 为刚度矩阵(表征结构抗变形能力)
\\( F(t) \\) 为随时间变化的外载荷矢量
二、主要分析方法
1. 完全法(Full Method)
采用完整系统矩阵计算,允许包含塑性、大变形等非线性特性
优点:无需主自由度选择,支持所有载荷类型(节点力、温度载荷等)
缺点:计算开销最大
2. 模态叠加法(Mode Superposition)
通过模态振型加权求和计算响应,适合线性问题
优点:计算效率高,支持模态阻尼
缺点:时间步长必须恒定,仅允许简单接触非线性
3. 缩减法(Reduced Method)
通过主自由度和缩减矩阵压缩计算规模
优点:比完全法更快
缺点:载荷必须施加于主自由度,无法处理单元载荷
三、数值求解算法
1. Newmark时间积分法
无条件稳定条件:\\( \\gamma \\geq 0.5 \\),\\( \\beta \\geq 0.25(\\gamma+0.5)^2 \\)(默认参数γ=0.1)
平均加速度法(γ=0.5)无数值阻尼,但高频计算可能产生噪声
2. HHT算法
ANSYS默认算法,通过α参数控制高频数值阻尼
优势:低频阶段保持精度,高频阶段引入可控阻尼
四、关键参数选择
时间步长:建议取最高有效模态周期的1/20,载荷突变处需更小步长
阻尼设置:瑞利阻尼或模态阻尼(仅模态叠加法支持)
五、典型应用场景
冲击载荷(如汽车碰撞、手机跌落)
周期性载荷(如桥梁振动、机械启停)
示例代码(APDL)可参考完全法实现梁结构瞬态分析。